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Assembling and analyzing a full new database is a time consuming process. Often several months
to few years can separate the constitution of the database, its annotation and the automated analysis.
We present a pipeline dedicated to accelerating this process. We developed two different tools:
a tablet application to accelerate data annotation and a meaningful features extraction pipeline
through a self-supervised learning model using inpainting. These two tools were developed and
tested on the LUMIERE Platform database composed of pregnancy MRI. Using MRI instead of
ultrasound images for fetus analysis is a new approach and developing the two tools on this database
could allow us on the one hand to understand more aspects of fetal development and on the other
hand to constitute a reference atlas of fetus MRI. The work done for the LUMIERE database could
be then adapted to any medical database.

I. INTRODUCTION

A. Fetus and MRI

Antenatal screening is used in order to identify ab-
normalities and to improve perinatal care. Congenital
disorders are one of the leading causes of neonatal mor-
tality worldwide. Thus, detecting and preventing those
disorders are of the utmost importance.

Prenatal ultrasound (US) is usually carried out in two
dimensions to check organs’ presence, shape and global
morphology. Nonetheless, there are several sources of
complexities when using US such as the lack of stan-
dardization of the analysis, difficult technical conditions,
mother health variability, ”geometry” and differences in
the medical doctor’s skills.

Recently, fetal magnetic resonance imaging (MRI)
emerged as an important tool for providing information
about the developing fetus [1–3]. In situations where the
ultrasound is unclear or if we need more accurate diagno-
sis of certain observations, magnetic resonance imaging
could strongly reinforce robustness. MRI can be instru-
mental in fetus and mother care as it allows to obtain
a full view of the fetus, have a higher sensitivity than
ultrasound images and less user-dependency. The two
imaging modalities, US and MRI are complementary [4],
they could clarify diagnosis and optimize perinatal man-
agement. Nonetheless, MRI’s benefits come with some
challenges. Users have to deal with complex imaging and
motion artefacts. Above all, as we are in the early stages
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of fetal research using MRI, we do not yet have an atlas
to serve as reference point for research work.
Among the major initiatives leveraging MRI for fe-

tus diagnosis, the LUMIERE Platform [5] located at the
Necker Children’s Hospital is one of the first hospital labs
with an MRI dedicated to fetal research.
Here is a link to consult the full segmentation manually
made by one of the LUMIERE’s expert.
In order to accelerate the process of analyzing their data
they decided to collaborate with the Institut Pasteur
Paris to solve the following problematic : How to au-
tomate fetal MRI analysis ? We aim to analyze the data
provided by the LUMIERE Platform using techniques
such as segmentation to further increase the quality of
medical diagnosis and to build a deeper understanding
of the fetal development. By going to a sufficient degree
of precision, these analyses could allow us to help the
surgery decision in case of an intervention during preg-
nancy, perform virtopsia that could give the same amount
of information as a real autopsy or even constitute a fetus
MRI atlas.

B. The Project

With a new medical database, one can follow this gen-
eral pipeline to entirely segment it:

• Separate the database in two groups, a small and
a large one

• Extract meaningful features and annotate the data
from the small group

• Feed a segmentation model with your extracted fea-
tures, the annotated data and the large group
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FIG. 1: Representation of the general pipeline of a segmented database assembling from a raw MRI
database.

This pipeline is summarized in Figure 1. You end with a
database fully segmented thanks to a limited amount of
data.

The aim of this work is to go beyond this general
pipeline by developing two different tools in order to
obtain more easily the final segmentation. First, by
accelerating the constitution of the annotated database
thanks to a software tool that will ease the annotation
work of the medical doctor. Secondly, by finding deep
semantic features thanks to a self supervised learning
task.

Creating a software product such as a tablet applica-
tion that facilitates the process of annotating data could
be beneficial for the medical doctor who would save a
huge amount of time. The new software DIVA-cloud [6]
developed by the Institut Pasteur Paris allows data an-
notations and learning in virtual reality [7]. It leverages
recent initiatives and software developed to analyze data
in VR [4, 8, 9]. Thanks to this tool, an inexperienced
user can annotate complex data and get an initial seg-
mentation of a structure of interest in a dozen seconds
thanks to a one-shot learning implementation. Yet, we
need our medical doctor partner to ”proof” the anno-
tation prior to beginning the deep learning phase. Due
to the medical context, having medical doctors annotate
data is challenging. It would thus be ideal to develop the
app running on a digital tablet and allowing experts to
quickly correct annotation using a stylus. This tool could
be simply built on top of an already existing medical 3D
images reader such as Napari [10], Ilastik [11] or Weka
[12].

Regarding fetus image analysis, large databases won’t
be accessible for long. A few hundred MRIs are the max-
imum we can expect in the next few months. Hence,
to devise a robust segmentation algorithm we also need

to use self-supervised learning to provide improved fea-
tures. We will focus our work on 2D inpainting pretext
tasks because the latter is largely described in the litter-
ature as a very efficient way to learn complex semantic
features [13–15]. Using convolutional autoencoders, the
latent representation learned by the inpainting task con-
tains strong information for training a robust segmenta-
tion algorithm [16]. It is more convenient to start with
2D pretext tasks in order not to have memory issues. In-
deed, the data from the LUMIERE Platform contain tens
of 2D 512x512 pixels slides. Later on, we could simply
reconstruct a 3D feature map from all the 2D maps.

II. AN ANNOTATION SOFTWARE

A. Aims of the tablet application

We aim to create a software able to accelerate the as-
sembly of any medical database. Ideally, this software
can run locally, on any computer and especially on a
tablet. Implementation of one shot segmentation have
been numerous in the literature [17–20] and have been ex-
tremely useful for our purpose. A similar software imple-
mentation has already been put in place in virtual reality
(VR) [7]. Although our application does not use VR, we
were largely inspired by this implementation. Here one
of the main objectives is to appeal to basic reflexes while
using our app : the expert simply draws with a stylus
some annotations and can end with the segmentation of
an object of interest.
Our application is composed of a reader that is able

to load DICOM, NIFTI and TIF/TIFF files. Note
that medical images are most often stored in the Digi-
tal Imaging and Communications in Medicine (DICOM).
A radiologist-looking interface allows the user to switch
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FIG. 2: Main screen of the application.
1- Load your file, 2- Change views, 3- Annotate, 4- Run segmentation, 5- Correct Segmentation

(a) Example of annotations on an
MRI image from LUMIERE Platform

(b) Placenta segmentation result with
threshold = 17.

(c) Placenta segmentation result with
threshold = 180.

FIG. 3: Output examples from the annotation application
Different steps for placenta segmentation. In blue, annotation for the background pixels, in brown, annotation for

placenta pixels.

from one medical view to another (coronal, axial, sagit-
tal) and a simple contrast-enhancing method improves
the visualization (Figure 2).

The user can overlay the data with an annotation layer
of the same dimension as the MRI. On this layer, one
can draw the two different classes he is interested in seg-
menting. Typically, the user will annotate with two col-
ors: one for your object of interest and one for the back-
ground. In Figure 3.a, we can see this situation with the
placenta as the object of interest.

After having annotated a few slides, we can run the
main functionality of the application which is the one
shot segmentation. Using the annotations, the model
will infer on the other pixels and will output a segmenta-

tion of the object of interest (Figures 3.b and 3.c). Then,
we can correct this first try by removing or adding an-
notations and re-iterate until we end with a satisfying
segmentation. We can finally save the annotation and
segmentation mask in TIFF format.

B. Napari

We used an existing medical reader Napari [10]. Na-
pari is a multi-dimensional image viewer for Python. It
is designed for browsing, annotating and analyzing large
multi-dimensional images. It is built on top of Qt (for
the GUI), vispy (for performant GPU-based rendering)
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FIG. 4: General pipeline of the one-shot segmentation procedure.

FEATURES KERNEL VALUE
Entropy 1 - 3

Standard Deviation 1 - 5
Gaussian Blur 3 - 5

Gradient 3 - 5
Laplacian 2 - 32
Maximum 1- 5 - 9
Minimum 1 - 5 - 9
Mean 1 - 5

(a) Features used

PARAMETERS VALUE
Number of trees 50

Depth 50
Criterion Gini

Max Features Sqrt
Oob Score True
Bootstrap True

Resampling to have same amount of class in and out True

(b) Random Forest Classifier parameters

TABLE I: The one-shot segmentation model

and the scientific Python stack (numpy & scipy). It is
particularly convenient for our task as the option to over-
lay the raw data with annotations is already available in
the raw version. In addition, Napari has implemented
a slider that allows navigation through large 3D images
which is ideal for the MRI from LUMIERE Platform.
The user could quickly annotate a few stacks, run seg-
mentation and see appearing fully segmented 3D images.
On top of that, Napari is open-source, it can run every-
where and we can easily add functionalities to the raw
version by simply adding python code to a notebook or
even creating our own plugin.

C. One Shot Learning

Managing to perform quick segmentation to decrease
the time spent on labeling datas is challenging. In our
case, one-shot learning is especially appealing because it
only requires one annotated example during the whole
training stage and then could segment the unlabeled im-
ages. For our application, we need pixel-wise few-shot
segmentation, that is to say : using the quick annota-
tions of the medical doctor as labels and use them to
identify to which class belongs the other pixels. Our ob-
jective is to exploit new data without prior information
or a pre-trained model. This functionality was largely
inspired from the DIVA Cloud implementation [7] where
the procedure consists of rapid 3D tagging in VR, sim-
ple classifier training and inference on the entire dataset

with iterative corrections performed within VR. In the
updated version of the DIVA software, they implement a
VR tagging functionality which allows voxel annotation.
We try to adapt the pipeline created to pixel and 2D MRI
slides. The complete procedure of the one shot learning
functionality is described schematically in Figure 4.

Our application consists in accelerating data annota-
tion using a simple one-shot learning procedure. We fol-
low the same principles as those used in Ilastik [11], Weka
[12] or behavior detection in larva [21], by tagging lim-
ited sets of data and stacking simple learners in order to
train a collectively stronger classifier. We combine this
model with a feature extraction procedure. Specifically,
features are associated with tagged pixels, and learning is
performed using robust classifiers in limited amounts of
data. Furthermore, data tagging iterations allow the cor-
rection of anomalies in the learning to process the data.
Whereas the DIVA software developed the quick anno-
tation tool in 3D, here we focus on 2D features, we are
working on pixels on each slide of the MRI. Each pixel
contains a small subset of features [12]. It includes a
wide variety of spatial filters (Gaussian, median, mean,
etc.) with different kernel sizes for guaranteeing multi-
scale features. The kernel sizes used have to be roughly
the scale of a typical medical object of interest, that is
to say between 1 (typical tumor size) and 10 (typical or-
gan size). Table I describes the different features and
parameters used in the application model.

Basic classification approaches were used in the DIVA
cloud implementation [7] since they are known to pro-
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vide robust classification on small datasets, such as Ran-
dom Forest Classification (RFC), Multi-Layer Perceptron
(MLP), Gradient Boosting (XGB), Support Vector Ma-
chine (SVM), and Naive Bayes (NBC) as implemented in
the Scikit-learn Python package [22]. Results show that
the fastest and most efficient model is the RFC, so we
build our model following this approach. The output of
the inference is a probability segmentation map. We can
set up a threshold value in order to be more or less severe
in the discrimination of the pixels that belong to our class
of interest. Figure 3.b and 3.c show the segmentation
output with two different threshold values. The purpose
of this segmentation is not to avoid any mistake but to
be fast. Tags can be updated or erased if necessary. On
the first run we will often end with a poor segmentation.
Note that in this application, the usual problem of over-
fitting [23] is less present, as the goal is to annotate the
data being explored and not to find a general learning
scheme.

D. Results

Our analysis was performed on a Windows 10 based
Ã64 system with an Intel i7-7700 CPU clocked at 3.60
GhZ, with 32 GB of RAM and an NVIDIA GeForce RTX
2080 Ti graphics card. Analysis scripts were coded in
Python 3.7.

We share two videos to get a better understanding of
the application functionalities. The first one is a pre-
sentation of the application : a file is loaded and then
some annotations are drawn to perform placenta segmen-
tation. The second one is an illustration of the segmen-
tation functionality output.

Performance depends on the nature of the features ex-
tracted from the dataset. As features were designed to
cover a large variety of patterns and scales, our method
can be used in many additional applications and data
types.

To evaluate the performance of our functionality, we
compare the output of the segmentation with the same
image fully tagged by an expert. We computed the Dice
coefficient between our inferred probabilities and the ex-
pert segmentation. The Dice coefficient is computed on
every threshold value and we kept only the best one. The
goal is to end with a final segmentation much faster than
the expert full tagging but with a Dice coefficient which
remains acceptable. As we can notice on Figure 3.b when
the threshold is low, there are many mistakes after the
first run so there is a real need of iterating several times
to end with the desired level of correct segmentation.

The average value of the dice coefficient on 10 different
images is 0.56. This value would not be very high in the
case of a classical segmentation experiment but consid-
ering that we obtain this value by annotating only one
2D slide and without correction, we can easily approach
a better value using iterating runs. The main result is
the time saved for the annotation expert. The typical

time spent for an expert from the LUMIERE Platform
to segment entirely an image by using 3D Slicer (REFER-
ENCES) is 7 minutes. With our application, we obtain a
segmentation with the same precision (multiple runs to
end with a Dice coefficient above 0.8) in only 3 minutes.

E. Perspectives

We achieved to reach the goal of the application which
was to accelerate the process of labeling data. The
method developed in this application can be used for any
type of medical images [7]. The number and nature of the
features can be extended to capture specific properties of
image stacks.

III. FEATURES EXTRACTION USING
INPAINTING

After simplifying the medical doctor’s work with our
new software tool, we want to dive into high semantic fea-
tures that characterize fetuses to reach our final purpose:
segment an entirely new database with a little amount of
data and robustness. In order to do so we will develop a
self-supervised learning method using inpainting.

A. Self-supervised learning

Recently, there has been a particular interest in learn-
ing meaningful representations using weakly-supervised
or self-supervised learning (SSL). SSL is learning from
unlabeled data. It allows the prediction of any unob-
served or hidden part of the input from any observed or
unhidden part of the input [24].
In natural language processing, Collobert and Weston

[25] were able to build a contextual language solver : a
model able to retrieve a word between two known words
in a sentence. They use a discriminative approach. The
algorithm Word2Vec [26] solve the same kind of problem
but formulate it as word prediction.

In computer vision, one of the first applications of SSL
was to use the temporal information contained in videos.
The consistency across temporal frames has been used to
train models able to predict a frame between two known
frames thanks to the learned embedding representation
[27, 28]. Many efforts were also performed on images.
Doersch et al. [29] use image patches and their relative
positions to train an unsupervised deep feature represen-
tations. They seek to solve the discriminative task : is
patch A above patch B or below ? If the model is able to
answer this question, it has learned an embedding repre-
sentation of the image context.
We will try to go further using inpainting by solving

a pure prediction problem which is : what pixel inten-
sities should go in the hole we created ? This approach

https://drive.google.com/file/d/1v8r2AwE7ZzF2d4btcrtexZki5GvSYO-S/view?usp=sharing
https://drive.google.com/file/d/1X5eTSMrBcOMl_A2vSWXfi1J3Ty3q1boz/view?usp=sharing
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(a) Corrupted MRI (random shapes
corruption).

(b) Corrupted MRI (classic hole
corruption).

(c) Corrupted MRI (biased toss
corruption).

FIG. 5: Corrupted images from the LUMIERE Platform database.

CORRUPTION TYPE TRAINING LOSS VALIDATION LOSS

Classic Hole 0.0021 0.0019

Biased Toss 0.0020 0.0020

Random Shapes 0.0025 0.0020

TABLE II: Effects of corruption type on the model performance

is challenging because we need to predict many real val-
ues per training example compared to NLP applications
[25]. Moreover image pixel prediction is also harder to
cheat since low-level image features do not provide any
meaningful information.

There are many different SSL pretext tasks [30–34],
our first step was to choose the most relevant one for our
features extraction task. Although Jigsaw Puzzle tech-
niques show interesting results in learning visual repre-
sentations [30], we decided to focus on the inpainting task
thanks to the studies already available in the literature
[13, 16, 35] that shows substantial results when dealing
with latent features representations. It seems that the
inpainting pretext task allows a model to learn global,
semantic meaningful features which seem ideal for our
purpose to get a better understanding of the fetus body
organization.

B. Inpainting

Image inpainting consists in rebuilding missing or dam-
aged patches of an image. Typical applications of in-
painting are used for old photos, painting restoration or
image editing. For example, Photoshop has a power-
ful completion tool. An interesting point to notice is
that convolutional neural networks (CNNs) perform bet-
ter than humans on a classification task [36] but for in-
painting results, those are visibly worse than human pre-
dictions. It is easy for us to mentally reconstruct a miss-
ing section of the image, we just compare the context
with our knowledge of the world.

Several authors explored a large variety of techniques
trying to compete with humans. Pathak et al. [13] build

an hybrid L2-adversarial loss and emphasize the impor-
tance of Leaky ReLU in their results. A team of re-
searchers from Google DeepMind propose a model [35]
that is using a product of conditional probabilities. These
probability functions are modeled by a convolutional neu-
ral network on neighboring pixels (Pixel CNN). In their
paper, this method was thought to generate images but it
can be applied to our task. Another interesting approach
is [37]. Yang et al. propose a method to tackle inpainting
of large sections on large images. They train two net-
works: a content and a texture network that minimizes
local texture loss. They use neural matches to ensure
that the texture inside the constructed crop is similar to
the texture of the local context.

C. our Model

The efficiency of an inpainting model is dependent on
numerous hyperparameters. Our aim was to devise a
task that would capture the global characteristic of the
foetus.
First, we dealt with the type of corruption to apply

to the MRI images. We designed 3 different corruptors
which are presented in Figure 5. The random shapes cor-
ruptor (Figure 5.a) is a combination of circles, triangles
and squares randomly located in the image. The classical
hole corruptor (Figure 5.b) is using multiple squares ran-
domly inserted in the image. The biased toss corruptor
(Figure 5.c) is using a binomial test for each pixel value
to decide whether it will be black or not, you can set up
the binomial parameter according to the percentage of
the image you want to hide. We took the most complex
corruptor that is to say the one that gives the highest
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PATCH SIZE TRAINING LOSS VALIDATION LOSS INPUT ARRAY SIZE

8x8 0.0013 0.0012 8 GB

11x11 0.0015 0.0014 10 GB

32x32 0.0018 0.0017 25 GB

50x50 0.0020 0.0020 40 GB

64x64 0.0040 0.0040 60 GB

TABLE III: Effects of patch size on the model performance

FIG. 6: General architecture of the inpainting model.

loss values (see Table II) when performing the training
phase.

Another important parameter was the patch size.
Here, we used 2D inpainting due to the size of the MRI
stack that was incompatible with 3D analysis. We learn
features representation on 2D slides of the MRI and we
will then reconstruct the different slides in order to use
the learnt representations in our final model. 2D slides
were too large to feed efficiently a network. 2D slides
from the LUMIERE Platform are 512x512 pixels. The
patch size has to be sufficiently large to catch the fetus
characteristics and sufficiently small to avoid memory is-
sues. A good compromise was the 50x50 pixels patch
(see Table III). We decided to patch the image and then
corrupt the patches, not the other way around, we found
that this decision does not influence the model perfor-
mance.

The literature gives us the percentage of corruption
needed [13, 16] to learn meaningful features. We have
set this percentage at 20%. The limited amount of data
prevented a larger percentage of corruption

We use a classical mean squared loss and the RM-
SProp optimizer from the Keras library.

Inpainting is part of a large set of image generation
problems. Methods to solve those problems usually rely
on autoencoders. Autoencoders are made of two net-
works: the encoder and the decoder. First, we encode

the image into a lower-dimensional representation of an
image (the latent space). Then, the decoder will work
from this embedding to reconstruct the original image.
This architecture forces the encoder to try to encode as
much information as possible into the embedding. Since
this is a small vector (a bottleneck), the encoder has to
learn high-level, smarter features to compress the input
with minimum loss. Those high-level features are hence
more robust to noise and changes than raw pixels.

We started with a very simple model with a bottle-
neck of 16 filters using only convolutional layers and we
modified the architecture iteratively after each perfor-
mance improvement. For our final model, we took an
image patch 50x50x1 (grayscale images) as input and a
bottleneck of 7x7x512. Smaller one would not allow for
enough space to encode the input information. Litera-
ture encourages us to use several small filters rather than
bigger ones. Indeed, we can get the same receptive field
with deeper networks. For the entire project, we only
used filters of size 3. We tested size 5 and 7 and they al-
ways performed worse. We experimented with an encoder
with five blocks composed of two 2D convolutional lay-
ers,a normalization layer after each of them and a pooling
layer that doubles the number of filters (from 32 to 512).
The decoder is a symmetric version of the encoder com-
posed of 5 blocks with upsampling layers. Using batch
normalization on each layer increases the performance
with similar training times.
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MODEL NUMBER OF DATA TRAINING LOSS VALIDATION LOSS

Naive 80.000 0.0019 0.0024

Naive 300.000 0.0020 0.0020

Final 80.000 0.0015 0.0015

Final 300.000 0.0005 0.0005

TABLE IV: Training and validation loss values according to number of data and the model used
Naive is the model with only 16 filters and Final is our chosen architecture.

FIG. 7: Training and validation loss graph.

D. Results

All the tests were performed on a secured Google Drive
connecting to Google Colab Pro+ (50 GB RAM and
GPU).

One last parameter was not discussed yet : the num-
ber of patches used for training, validating and testing.
We begin our test with the naive autoencoder on 80.000
different patches, distributed among the 3 categories as
follows : 70% for training, 20% for validation and 10%
for test. We set up the batch size to 128 and the num-
ber of epochs to 100. Then we increase our number of
data to 300 000 patches after having noticed overfitting.
Finally, we replace the naive autoencoder by our final
architecture to reach lower loss values. The results are
summarized in Table IV. We notice that the loss values
stagnate from 25 epochs and so we end with the following
training and validation loss in Figure 7. Final value of
training and validation loss is 0.0005.

To be able to quantify the success of our implemen-
tation, we want to look at the reconstruction power of
our inpainting model. We will compare the raw data
from LUMIERE Platform with the reconstructed image
inferred by our model on the corresponding corrupted
patches that composes the image. In Figure 8, you can’t
see any differences between 8.a : the raw and 8.b : the

reconstructed image. We use the Peak Signal to Noise
Ratio to quantify the reconstruction power. It is a log-
arithmic metric that quantifies the differences between
two images by using the mean squared error on each pixel
value. We compute 3 different values of PSNR : one for
the naive autoencoder, one for the architecture chosen in
this task and a last one with a bottleneck of 1x1x1024
to check if the bottleneck depth add a substantial im-
provement. Results are summarized in Table V. With
our model, we reach 34 dB. It is in the range of a sat-
isfying reconstruction. [13] However, while the power of
reconstruction ensures that our inpainting task works, we
are more interested in how relevant the features learned
are. Are they really correlated to the fetus body organi-
zation? We need to end our task verification with results
that can guarantee the usefulness of the bottleneck rep-
resentation for our final segmentation task.

MODEL PSNR

Naive 30 dB

Final 34 dB

Deeper (1x1x1024) 34 dB

TABLE V: Peak Signal to Noise Ratio results
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(a) Raw data from LUMIERE Platform (b) Reconstructed data through the inpainting model.

FIG. 8: Raw and reconstructed MRI image.

MODEL SVM ACCURACY RFC ACCURACY

NO-FEATURES PATCH 59% 61%

LATENT REPRESENTATION 75% 87%

TABLE VI: Fetus or non fetus classifier accuracy

E. Information stored in the latent representation

We checked that our learned latent representation was
meaningful for fetus segmentation so we decided to de-
velop two different verifications. The first one is dimen-
sionality reduction with the t-SNE method and the sec-
ond one is a fetus or non fetus classifier with our bottle-
neck representation as input.

1. t-SNE visualisation

t-SNE is a method to visualize high-dimensional data.
It converts similarities between data points in high di-
mension to joint probabilities and tries to minimize the
divergence between the joint probabilities of the low-
dimensional embedding and the high-dimensional data.
For our task, we manually labeled all the patches to keep
track of whether the patch represents a part of the fetus
or not. We suppress all the background patches in or-
der not to have a significant difference between patches
(we want to only have mother or fetus parts). After ex-
tracting the output of our bottleneck representation, we
linearize our data and we project them from 7x7x512 (a
little more than 25000 dimensions) to 2 dimensions.

We can see the t-SNE output in Figure 9. One can
note a tendency as the yellow patches representing the
fetus patches are close to each other in the projection
dimension. However, we only used 121 patches as manu-
ally label patches is time consuming. Moreover the fetus
patches do not form a distinct and clear cluster separated

from the rest of the patches so this result is not sufficient
to conclude on the quality of the learned features.
Due to lack of time, we did not test a UMAP projection.

FIG. 9: t-SNE Visualization of the latent
representation from the inpainting model.

In yellow, the fetus part patches, in purple the mother
part patches, number of patches = 121

2. Simple fetus classifier

Another idea was to build a linear classifier and take as
inputs the output of the bottleneck from our inpainting
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model. We can manually label each patch that represents
a fetus part and take a look at the final accuracy. If
this latter is high, we can conclude that the learnt latent
representation helps to discriminate fetus part from non
fetus part and thus, understand its general organization.

We perform this method on 1147 patches with a bal-
anced number of fetus and non fetus patches. We test
two different models : support vector machine and ran-
dom forest classifier from the scikit-learn library [22]. In
order to have a model for comparison, we apply the same
procedure to patches of the same dimension but without
features.

Table VI describes the results obtained. With our la-
tent representation the accuracy of the random forest
classifier reaches 87% of accuracy versus only 61% for
the no-features representation. This last result is much
more potent than the t-SNE visualization. Thanks to it,
we can conclude that our features seem to characterize,
at least in part, the organization of the fetus. We suspect
that by increasing the number of patches we could have
exceeded 90% of accuracy but again the patches labeling
is very time consuming.

F. Perspectives

We were able to build an inpainting model that works
efficiently. The model was simple but efficient: extract
features of interest to characterize the fetus. Thanks
to fetus or non fetus classifier that confirms these fea-
tures describe the organization of the fetus, we will be
able to integrate those features in a segmentation model.
Thanks to this representation, we will only require a lim-
ited amount of annotated data to have a robust final
segmentation.

Nevertheless, it would be interesting to go further in
our model by using a more complex loss such as an hy-
brid one (L2+adversarial loss [13]). One could also have
thought to use a diffusion model [38] which would have
given us a completely different latent representation.

IV. CONCLUSION

We achieve the two purposes of this study. We first
accelerate the constitution of an annotated database by
developing a software interface destinated to medical doc-
tor experts. This interface can be used without previous
knowledge on any computer. Then, we develop a self-
supervised model using inpainting in order to extract
meaningful fetus features. These extracted features will
allow us to only use a limited amount of annotated data
for the future segmentation of the database. Thus, we
automate the analysis of the LUMIERE Platform MRI
database. As the inpainting pipeline could be re-used for
other medical data type, after having build the segmen-
tation network (typically a UNET architecture), one can

use the two tools developed on one part of any new medi-
cal database, mix it with the other non-analyzed part and
perform partial or total segmentation in a faster way.
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