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ABSTRACT

This paper provides a thorough analysis of the paper: "From Trees to
Continuous Embeddings and Back: Hyperbolic Hierarchical Cluster-
ing" [1], contextualizing and elaborating on its concepts. It extends
the original work to various datasets, including textual data as
well as synthetic data, and introduces dendrogram purity as a new
metric for result analysis. The study identifies and discusses the
original method’s limitations, particularly its computational inten-
sity and the trade-offs with its triplet strategy. We also propose an
alternative sampling strategy. This report aims to provide a review
offering insights into the original work’s context, interpretation,
extensions, and identified limitations.
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1 INTRODUCTION

Hierarchical Clustering (HC) is a fundamental methodology in data
analysis, providing an organizational framework that arranges clus-
ters into tree structures to reveal inherent hierarchical relationships.
Distinguished from several flat clustering techniques, such as k-
means, which segregate datasets into disjoint subsets, HC uniquely
fabricates an inclusive hierarchical architecture of clusters, typi-
cally represented through a dendrogram. Leaves correspond to data
points and internal nodes correspond to clusters. HC has proven
its usefulness in various applications where data show hierarchical
structure such as phylogenetics [4] or community detection [7].
The principal allure of HC lies in its capacity to afford a multi-scale
perspective of the data, elucidating structures across diverse levels
of granularity [8, 14, 16].

HC predominantly bifurcates into two methodologies: the ag-
glomerative, which adopts a bottom-up approach, and the divisive,
implementing a top-down strategy. Agglomerative Hierarchical
Clustering (HAC) commences with individual data points as soli-
tary clusters. These clusters are then iteratively merged, ascending
the hierarchy based on a predefined similarity or distance metric,
culminating in a single comprehensive cluster. A pivotal element
in HAC is the choice of linkage criterion, dictating the mode of
distance computation between clusters. Commonly employed link-
age methods encompass single linkage [12]: minimum distance,
complete linkage [15]: maximum distance, average linkage [13]:
average distance, and Ward’s method [17]: minimizes intra-cluster
variance. Divisive method is a top-down approach that begins with
all data points in a single cluster and iteratively splits the cluster
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into smaller clusters. The process starts at the top of the hierarchy
and progressively divides the dataset into finer and finer clusters.
The divisive algorithm can use various criteria for splitting a cluster,
often based on measures of dissimilarity or distance between data
points. Divisive methods are generally considered more compu-
tationally intensive but can be more accurate, especially in cases
where the underlying data structure is genuinely hierarchical. An
example of a divisive method is the bisecting K-means [19] which
is a variation of the standard K-means clustering algorithm. It it-
eratively splits the dataset into two clusters using the K-means
algorithm.

Yet, a thorough examination of extant literature [5][18] reveals
that theoretical advancements in HC, especially regarding the ef-
ficient optimization of these algorithms, have not kept pace with
their widespread application. In this juncture, the significance of
Dasgupta’s cost [3] emerges, introducing a novel metric to assess
cluster quality. Dasgupta’s cost, conceptualized by Sanjoy Dasgupta,
is a criterion for evaluating the efficacy of a hierarchical clustering
output. It establishes an objective framework for assessing a tree
structure generated by a hierarchical clustering algorithm, focusing
on the pairwise similarities between data points. Mathematically,
the cost of a tree involves considering each data point pair, and for
each, multiplying the population at their lowest common ancestor
by their similarity.

costg(T) = Z wijlleaves(T[i V j])|
(i,j)€E

The lower this cost, the more optimal the clustering is deemed.
Dasgupta’s cost has thus become a cornerstone in hierarchical
clustering, providing a robust means to compare different clustering
outputs and guiding the evolution of more efficacious clustering
algorithms. The main issue of this cost function is its inherent
discreteness as it is built on top of the Lowest Common Ancestor
(LCA) concept.

This paper introduces a differentiable relaxation of Dasgupta’s
discrete optimization problem, building upon the foundational work
of preceding methodologies such as UFit [2] and gHHC [9]. While
these prior approaches have explored gradient-based HC through
embedding methods, they diverge in their direct relaxation of Das-
gupta’s optimization problem. UFit incorporates Euclidean embed-
dings in conjunction with an “ultrametric fitting” problem, whereas
gHHC presupposes the knowledge of leaf hyperbolic embeddings.
Both methods, however, are overshadowed by discrete agglom-
erative algorithms in performance and lack rigorous theoretical
underpinnings.

The novel methodology presented herein is underpinned by
three groundbreaking concepts:
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o The innovative parameterization of the search space through
the bijection between binary trees and hyperbolic space.

In the realm of hyperbolic embeddings, these representations have
shown exceptional aptitude for delineating hierarchical structures
and complex networks [6] with scale-free characteristics, such as
social and biological networks, and linguistic trees [10]. Hyperbolic
embeddings strategically configure distances in the embedding
space to mirror the hierarchical relationships inherent in the data,
ensuring that closely related items are proximal in the hyperbolic
space, while those from disparate hierarchy branches are distanced.
This natural alignment makes hyperbolic embeddings an ideal can-
didate for pursuing Dasgupta’s cost relaxation [11].

e The formulation of a continuous analogue for the Least Com-
mon Ancestor (LCA), which appears in the expression of
Dasgupta’s cost, to facilitate its differentiable relaxation.

This formulation links shortest paths in trees and hyperbolic geodesics.

e A decoding algorithm that translates continuous representa-
tions back into discrete binary trees.

This latter aspect is particularly crucial, as it enables the approxi-
mation of the discrete cost’s minimizer with noteworthy precision,
with €, an adjustable parameter, finely balancing quality assurance
against optimization challenges. Additionally, the proposed model,
HypHC, incorporates extensions that augment its scalability and
adaptability in handling large datasets and varied clustering sce-
narios. Under the assumption of perfect optimization, optimal clus-
tering achieved through HypHC approximates the discrete cost’s
minimizer within a 1 + € margin. This relaxation, when integrated
with gradient-based optimization, exhibits profound potential in
enhancing clustering quality, scalability, and adaptability, and can
easily integrated into broader machine learning pipelines.

This paper contributes a distinctive perspective to the optimiza-
tion challenges in hierarchical clustering. The subsequent sections
will delve into an in-depth analysis of this paper, discussing its
results, presenting various experimental validations, extensions,
and limitations, and offering a critical viewpoint on its findings.

2 DESCRIPTION OF THE PAPER

The paper introduces Hyperbolic Hierarchical Clustering (HypHC)
as a novel approach to hierarchical clustering that leverages hyper-
bolic geometry. The main objective of HypHC is to relax the tradi-
tional discrete optimization problem associated with hierarchical
clustering and provide a continuous, differentiable representation
that enables efficient optimization.

2.1 Continuous Tree Representation via
Hyperbolic Embeddings

Trees are represented using hyperbolic embeddings of their leaves
in the Poincaré disk. This is based on the insight that hyperbolic
space induces a correspondence between leaves embeddings and
binary trees, thanks to a decoding algorithm further introduced.
Specifically, the embeddings are performed in two dimensions, and
the paper acknowledges potential optimization difficulties due to
precision requirements. However, a proposition from prior work is
cited to address this issue by increasing the dimension [11].
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2.2 Differentiable Objective Function

The continuous representation of trees alone is not sufficient for
gradient-based hierarchical clustering because Dasgupta’s cost re-
quires computing the discrete Lowest Common Ancestor (LCA).
The authors leverage the similarities between geodesics in hy-
perbolic space and shortest paths in trees to derive a continuous
analogue of the discrete LCA. Thereby, the hyperbolic LCA of em-
beddings x and y is defined as the point on their geodesic closest to
the origin (the root). This hyperbolic LCA is then used to introduce
a differentiable version of Dasgupta’s cost, denoted as CHypHC:

CHypHC(Z;w,7) = X (Wij+Wix+Wjk—WHypHC,ijk (Z; W, 7)) +2X W

1)

where

WHypHC,ijk (Z;W, T) = (Wij, Wige, Wjk)-07(do (2iVz)), do (2 V), do (2 V2)) T

2.3 Hyperbolic Decoding

To derive a discrete binary tree structure from optimized embed-
dings, a decoding algorithm is proposed. This algorithm consists of
iteratively merging the most similar pairs based on their hyperbolic
LCA distance to the origin, ensuring the resulting tree structure
aligns with the hierarchical clustering defined by the embeddings.

2.4 Approximation Ratio Result

The paper presents a theoretical result stating that, under certain
conditions, the continuous optimization provided by HypHC yields
a (1+ €)-approximation to the minimizer of Dasgupta’s cost, where
€ can be made arbitrarily small. To achieve this result, optimization
must occur over the entire set of introduced spread embeddings.
For any triplet of embeddings:

max{do (2 Vzj),do(2i Vz),do(2j V2 )} —min{d, (z; V zj), do (zi V
zk),do(zj V zi)} > 6 - O(n).

This ensures that the Lowest Common Ancestor (LCA) depths are
distinguishable from each other, particularly guaranteeing that the
embeddings are well-distributed across the entire disk.

2.5 Practical Considerations

Despite the continuous relaxation, optimization can be highly com-
putationally expensive. That’s why the authors propose two empir-
ical techniques to accelerate optimization:

2.5.1 Triplet Sampling. Instead of computing the cost function for
all triplets, which is on the order of n, the cost is approximated on
a sample of triplets. The proposed sampling involves generating
all unique pairs of nodes and randomly selecting a third node. In
the next section, we will propose a less naive sampling heuristic to
further accelerate training.

2.5.2 Greedy Decoding. The authors suggest an approximation
of the initially described decoding, reducing the complexity from
0O(n?) to O(nlogn). However, we did not understand the utility
of such an approximation since it does not improve the overall
complexity of the algorithm. Decoding only occurs at the very end,
once the hyperbolic embeddings have been optimized. Empirically,
we verify that greedy decoding does not speed up the training of
the model.

ijk
ij >
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2.6 Experiments

In the experiments, HypHC is evaluated on standard basic datasets,
including those from the UCI Machine Learning repository and
CIFAR-100, against various hierarchical clustering methods, includ-
ing agglomerative clustering and UFit [2]. Performance metrics
include the Dasgupta Cost (DC) for clustering quality and classifi-
cation accuracy. HypHC consistently outperforms or matches the
best discrete methods and significantly improves over UFit.

However, the experiments seemed somewhat ineffective to us
for several reasons:

e Only very simple datasets are tested. In particular, no large
dataset is tested, even though the contribution of HypHC is
supposed to be its ability to scale to a larger dataset.

e The computation time is not compared between different
methods.

e Only the Dasgupta cost is compared, and while it is the-
oretically interesting, it may not necessarily be the most
informative metric.

Therefore, we present our original experiments, which allowed
us to address these different points more thoroughly.

3 EXTENSION OF THE RESULTS

Our research endeavors to corroborate and expand upon the origi-
nal study’s conclusions, examining the efficacy of the Hyperbolic
Hierarchical Clustering (HypHC) method across a broader spectrum
of datasets. We have introduced dendrogram purity as an auxiliary
metric to Dasgupta’s cost, aiming to furnish a dual-faceted evalua-
tion of clustering quality: a global perspective through Dasgupta’s
cost and a local viewpoint via dendrogram purity. The latter metric
is also posited as a means to facilitate comprehension, as it offers
a more intuitive assessment of cluster cohesion. This metric will
establish a connection to their outcomes on downstream classifi-
cation tasks. Additionally, we will evaluate the tradeoffs between
clustering quality and computational effort exhibited by HypHC,
and subsequently, we will present illustrative visual representations

3.1 Datasets

In our empirical assessment, we selected eight datasets, including
those from the original investigation: Zoo, Iris, Glass, and CIFAR.
To these, we appended results for dendrogram purity. Furthermore,
we integrated the Wine dataset, characterized by its three-class
structure and approximately 200 data points, and the Breast Cancer
(Wisconsin) dataset (BC in Table 1.), comprising 700 data points de-
lineated into malignant or benign categories. These were procured
from the UCI Machine Learning Repository and underwent stan-
dard preprocessing to achieve uniformity with the original dataset
inputs: normalization (mean of 0 and standard deviation of 1) fol-
lowed by transformation of features using cosine similarities. The
input for the different models is a pairwise similarity normalized
graph as in the original paper.

Notably, our methodology is bolstered by the addition of two
text-based datasets from the Internet Newsgroup (NG1 and NG2 in
Table 1.) data bank composed of 20K documents distributed over 20
topics. A word-document matrix was constructed, and 1000 words
were selected based on mutual information between words and
documents in an unsupervised manner. We applied standard tf-idf
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term weighting and normalized each document to 1. We randomly
selected 100 documents from five different topics, resulting in two
datasets of 500 documents each, distributed over five classes and
featuring 1000 characteristics.

3.2 Models and Training

The comparative framework of our study includes six methodolo-
gies: the HypHC from the focal paper, UFit—a recent initiative
employing "ultrametric fitting" within Euclidean embeddings, and
four conventional agglomerative hierarchical clustering algorithms.
We did not include a divisive method in our study. It could be inte-
grated for further research. Our training protocol adhered to the
original study’s regimen, applying Riemannian Adam for optimiza-
tion over 50 epochs. As in the original paper, note that UFit was
not specifically tuned for these datasets. Our training procedure
follows the study with 50 epochs of the sampled triplets.

The experimentation was done using 1 GPU Intel Iris Graphics on
a personal computer.

3.3 Metrics

To broaden our analytical perspective, we calculated dendrogram
purity for each dataset and method. Dendrogram purity, a metric
assessing the quality of hierarchical clustering, gauges the extent
to which clustering captures inherent class labels or categories at
different hierarchy levels, reflecting the purity of clusters relative
to predefined labels. Its value was computed at the cutoff level
corresponding to the number of classes. This metric was included
to provide an alternative viewpoint, as Dasgupta’s cost is often
complex for lay understanding.

Dasgupta’s cost, assessing the quality of a spanning tree, is based
on the likelihood that two randomly chosen points and their com-
mon ancestor are in the same cluster, dependent on the tree’s overall
structure and the integration of points within it. In contrast, purity
is a measure of a cluster’s accuracy in containing single-class el-
ements, evaluated within each cluster by examining the majority
class and disregarding data structure between clusters.

We observed scenarios where Dasgupta’s cost did not decrease,
yet purity significantly increased. This occurred when clusters pre-
dominantly contained single-class points, but their arrangement
became less optimal according to Dasgupta’s cost criteria. For in-
stance, if same-class points grouped together did not minimize
average distance to their common ancestor, Dasgupta’s cost re-
mained unchanged. Therefore, it was insightful to consider these
two metrics simultaneously, one offering a global view and the
other a local perspective, to assess both the overall tree structure
and the distinct separation of clusters.

3.4 Results

The results are presented in Table 1. For each dataset, we com-
puted two metrics: one for the Dasgupta Cost and another for the
Dendrogram Purity. The most favorable metric is denoted in bold,
while the second-best metric is underscored. Instances highlighted
in red signify that we were unable to calculate the metrics due to
memory constraints. Instances marked in cyan indicate metrics
that were not part of the original study but have been added for
comparative purposes. Furthermore, we computed the percentage
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700 IRIS WINE GLASS BC CIFAR NG1 NG2
# FEATURES 16 4 13 9 9 2048 1000 1000
# CLASSES 7 3 3 6 2 10 5 5
# POINTS 101 150 178 214 699 50K 500 500
DASGUPTA / DP 1073 1073 107° 1076 1077 10713 1077 1077
AGGLOMERATIVE
SL 2,897 /0,858 | 8,12/0,755 | 1,585/ 0,536 | 3,018/0466 | 8,38/0,865 | 4,149 /X | 451/0,56 | 4.6/0,51
AL 2.829/0.817 | 7.939/0.727 | 1.579/0.454 | 2.906/0.511 | 8.391/0.846 | 4.056/X | 4.47/055 | 4.57/0.56
CL 2.802/0.807 7.95/0.7 1.58/0.537 | 2.939/0.457 | 835/075 | 4.078/X | 4.47/06 | 4.55/0.56
WL 2.827/0.912 | 7.938/0.72 | 1.569/0.616 | 2.92/0.505 | 8.348/0.96 | 4.06/X | 4.45/0.65 | 4.51/0.63
CONTINUOUS
UFit 2.896/0.92 | 7.916/0.77 | 1.571/0.588 | 2.925/0.6 8.345/ 0.96 X /X 4.35/0.72 | 4.4/0.75
HypHC 2.802/0.843 | 7.881/0.77 | 1.566/0.77 | 2.902/0.686 | 8.341/0.96 | 4.056 /X | 4.27/0.88 | 4.32/0.86
Percentage Deviation (%) 34/77 3,0/0,0 1,2/ 15,4 4,0/0,9 0,6 /0,0 2,3/ X 5,6 /16,0 6,5/ 11,0
RUN TIME HypHC (sec) 452 492 674 646 489 X 1213 1277

Table 1: Analysis of clustering quality using discrete Dasgupta’s Cost (DC) and Dendrogram Purity (DP): top scores highlighted

in bold, second best underlined. Red crosses signifies computational limitations, Blue marks newly added results.

deviation between the HypHC metrics and the superior metrics
from other methods. Lastly, we provide the computational runtime
in seconds for 50 epochs of the HypHC method.

3.5 Analysis

Firstly, we have observed that in almost all cases, HypHC consis-
tently yields the highest dendrogram purity value. With the excep-
tion of the Zoo and Iris datasets, which we suspect may be relatively
straightforward for the method to distinguish itself, dendrogram
purity consistently surpasses other methods when employing Hy-
pHC. On the other hand, HypHC consistently achieves the lowest
value of the discrete Dasgupta Cost across all datasets. Notably,
HypHC outperforms both the top-performing discrete methods and
the single similarity-based continuous method, UFit. This finding
substantiates the central thesis of the paper, which posits that direct
optimization of a continuous relaxation of Dasgupta’s objective
can significantly enhance clustering quality at both local (DP) and
global (DC) levels.

In the case of the two newsgroup datasets, we presented a sce-
nario in which documents are clustered based on the top 1000 words
exhibiting the highest mutual information scores. We held the ex-
pectation that the HypHC method would significantly outperform
other methods due to its utilization of hyperbolic embeddings. This
challenging task serves as an ideal context for the method to excel.

Indeed, let us consider the challenge of arranging nodes within
a tree in a two-dimensional plane such that the spatial separation
between any two nodes accurately reflects their hierarchical rela-
tionship. In Euclidean space, this endeavor can lead to congested
representations as the depth of the tree increases. Conversely, hy-
perbolic space, characterized by its exponential surface area growth
relative to the radius, offers an expansive canvas capable of accom-
modating an expanding hierarchical structure without the overlap
or congestion often encountered in Euclidean embeddings.

This comprehension holds the potential to yield improved out-
comes. Our findings reveal a distinct and substantial improvement

in dendrogram purity when employing the HypHC method, sur-
passing the preceding method by over 10% in terms of purity and
more than 5% in terms of Dasgupta’s cost.

3.6 Running time considerations

One potential criticism pertains to the computational time required
for HypHC. As we augment the number of sampled triplets, we
observe a decrease in cost and an increase in dendrogram purity,
as evidenced in the visualization section. However, it is essential
to note that achieving robust clustering quality demands a com-
putational complexity of O(n?) , as indicated by the graph in the
paper. This phase, which accounts for the most significant runtime
expense within HypHC, necessitates substantial computation time
for training. A summary of the runtime duration for all datasets is
provided in Table 1.

For datasets with straightforward characteristics, such as Iris,
the HypHC method already demands more than 8 minutes, whereas
standard algorithms can produce commendable clustering results
in a matter of seconds with no difference in terms of dendrogram
purity. In scenarios involving uncomplicated datasets, akin to those
employed in the original paper, the application of HypHC appears
less feasible due to the extensive runtime requirements. Classical
agglomerative methods yield comparable outcomes within sec-
onds. Unfortunately, within our environment, we encountered con-
straints preventing the evaluation of this method’s performance
on larger datasets like CIFAR, attributed to limitations in memory
and computational complexity. The authors extensively discuss the
concepts of scaling and scalability. However, the examples provided
predominantly involve datasets of limited size and are focused
on GPU-based implementations. This is regrettable, given that a
significant portion of this paper is devoted to the utilization of
gradient-descent-based algorithms for hierarchical clustering, a
technique particularly suitable for large datasets. It is plausible that
this method could prove particularly advantageous when dealing
with substantial datasets, and it would have been insightful to as-
sess its performance in such contexts.
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In summation, this study shows that the HypHC method, grounded
in robust theoretical underpinnings, has demonstrated superior
experimental performance. It excels in both Dasgupta’s cost and
dendrogram purity metrics. However, the consideration of compu-
tational efficiency remains a critical factor, particularly when the
method is applied to less complex datasets or when scalability to
larger datasets is required. The original paper’s lack of focus on chal-
lenging datasets suggests an opportunity for future work, where
HypHC’s advantages may be more pronounced and distinguishable
from traditional methods.

4 SCALING CHALLENGES

4.1 HypHC Performance vs. Average Linkage
on Simple Datasets

We investigate the performance of HypHC in relation to the number
of epochs, each comprising 10,000 samples (corresponding to the
value of n? samples suggested by the authors) on the Zoo dataset.
Intriguingly, our results (Figure 1) indicate an unexpectedly lower
Dasgupta’s cost for Average Linkage compared to HypHC, contrast-
ing with the reported values in the original article’s result table.
Notably, the extensive training time required for HypHC (approxi-
mately 50 minutes) raises concerns, particularly when compared
to the rapid clustering capabilities of the average linkage method,
which achieves results in mere fractions of a second. This stark
contrast prompts a reevaluation of HypHC’s scalability, touted by
the authors.

Dasgupta's Cost over Number of Epochs (Zoo Dataset)

286000 - g~ Dasgupta's cost
-~ Auerage linkage Dasgupta's cost
—e~ Training Time.

\

Dasgupta's cost
Training Time (min)

)
Number of Epochs

Figure 1: Evolution of Dasgupta’s cost over training epochs:
HypHC vs. Average Linkage on the Zoo dataset. Training was
carried out here on a device without a gpu, unlike the ex-
periments in the previous section, which explain the longer
training times.

Moreover, our scrutiny exposes that the dendrogram generated
by the Average Linkage method is remarkably efficient, demon-
strating near-perfection, particularly in terms of purity. In contrast,
the decoded tree produced by HypHC falls short in comparison
(Figure 2. This observation underscores the inherent limitations
associated with evaluating clustering algorithms on overly simplis-
tic datasets such as the Zoo dataset. The disparity in performance,
combined with the effectiveness of alternative methods, calls for a
closer examination of HypHC’s alleged gains in scalability.

Conference’17, July 2017, Washington, DC, USA

Figure 2: Comparison of dendrograms: average linkage (left)
vs. HypHC (right) on the Zoo Dataset

® ) &

Figure 3: Visualization of HypHC embeddings of Internet
Newsgroup 1 dataset and decoded trees with increasing num-
ber of triplets. From left to right: 10K, 100K, 500K triplets.

When taking a more difficult dataset, we can see the value of the
proposed method. On Figure 3, we present visualizations featuring
three dendrograms generated by the HypHC method, each derived
from datasets containing 10K, 100K, and 500K triplets, using the
Internet newsgroup dataset 1 as the basis. Notably, as observed,
augmenting the triplet count results in a noteworthy enhancement
in clustering performance. Each color within these visualizations
corresponds to a distinct class. While the Dasgupta’s cost value
experiences relatively minimal fluctuations (less than 2%) as we
increase the number of triplets, the purity demonstrates substantial
improvement. Our findings corroborate the assertion made in the
paper that embeddings tend to gravitate toward the boundary of
the Poincaré disk as hyperbolic distances assume a more "tree-like"
nature. As stated by the authors, the optimal embedding closely
aligns with a tree metric embedding.

4.2 Impact of Dataset Size on HypHC
Performance on a Synthetic Dataset

We conducted a scaling study using a synthetic dataset generated
from a Gaussian mixture, featuring six features and five clusters
(Figure 4). In this investigation, we kept the number of triplets
sampled and the number of training epochs constant, ensuring a
fixed computational load. The primary focus was on evaluating the
influence of increasing the dataset size on HypHC’s performance,
specifically with respect to Dasgupta’s cost.

Our findings reveal that, as the dataset size increases, HypHC’s
Dasgupta cost diverges from that of average linkage, ultimately
stabilizing at a relative deviation of approximately 7% (Figure 5).
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This observation sheds light on HypHC’s ability to handle larger
datasets, at least for our synthetic dataset.

It’s worth noting that our exploration was limited by computa-
tional resources, preventing us from extending the analysis to even
larger sample sizes.

2D Plot of Data (PCA Projection)
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Figure 4: Synthetic dataset: Gaussian mixture with six fea-
tures and five clusters

o8 Varying Dataset Size (Synthetic Gaussian Mixture)

Dasgupta's cost
| T
& ;
Relative Difference (

N\

\

° 20 00 0 1250 1500 1750 2000

i
Dataset Size

Figure 5: Evolution of HypHC and average linkage Das-
gupta’s cost with the number of data points (constant running
time)

4.3 Enhancing Scalability: Triplet Sampling
Optimization

We finally addressed the critical aspect of triplet sampling, recog-

nizing its pivotal role in scaling HypHC. The challenge lies in the

necessity of having n? samples per epoch, as highlighted in the

original article, to achieve accurate results. Our initial experiment

on the Zoo dataset also underscored the need to train the model
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on a substantial number of samples for satisfactory performance.
However, the considerable computational time required becomes
a significant hindrance for practical adoption of this otherwise
promising method.

To mitigate this limitation, we explored a refined approach to
triplet sampling. Our method prioritizes the sampling of triplets
composed of two nearby points and a third distant one, particularly
in the early stages of training. More precisely, for each point, we
generate pairs from the x% of points that are most similar and x%
of points that are most dissimilar, with x increasing as training
progresses.

As an illustration, Figure 6 displays the distribution of counts for
each sampled point. As anticipated, the distribution for the naive
method, where triplets are randomly selected, follows a Gaussian
pattern. In contrast, the distribution for our method is non-Gaussian,
underscoring the fact that specific points are privileged over others
in the sampling process.

The underlying hypothesis behind our method is that, at the
outset of training, this sampling strategy allows us to directly select
triplets with the highest cost. However, it’s important to note that
our method demonstrated improved training results only for the
Iris dataset (Figure 7). Further experimentation with different hy-
perparameters would be beneficial, although regrettably, we lacked
the necessary computational resources for exhaustive testing.

Histogram of Node Sample Counts Histogram of Node Sample Counts

Number of Nodes
Number of Nodes

20800 20900 21000 21100 21200
Number of sampling Sccurences

20700 20800 20900 21000 21100 21200 21300
Number of Sampling Sccurences

Figure 6: Distribution of sample counts for each point when
training HypHC: Original naive method (left) vs. our method
(right) on the Iris dataset
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Relative Difference in Dasgupta's Cost when using our Sampling Method
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Figure 7: Relative difference in Dasgupta’s cost when using
our triplet sampling method on various datasets. Our method
is only improving clustering for the Iris dataset

5 CONCLUSION

The paper introduces HypHC as a novel approach to hierarchical
clustering, leveraging hyperbolic geometry to offer a continuous,
differentiable representation for efficient optimization. Through
innovative parameterization of the search space, a differentiable
objective function, and a decoding algorithm, HypHC demonstrates
good performance in both Dasgupta’s cost and dendrogram purity
metrics. The method’s scalability, while promising, demands careful
consideration of computational efficiency, particularly on simpler
datasets. Further exploration into challenging datasets and opti-
mizations, such as refined triplet sampling, reveals potential areas
for improvement. It is worth emphasizing that HypHC could be par-
ticularly well-suited for complex and bulky datasets. In scenarios
where computation time is not a major constraint, HypHC can offer
compelling results that distinctly stand out from classical agglom-
erative methods. This approach thus opens up exciting avenues
for research and application, especially in the realm of large-scale
clustering.
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